q&more
Meine Merkliste
my.chemie.de  
Login  

News

Sensoren auf Gummibärchen gedruckt

Mikroelektroden-Arrays können auf Gelatine und andere weiche Materialien gedruckt werden

N. Adly / TUM

Mikroelektroden-Arrays auf Gelatine: Ein Team um Prof. Wolfrum hat die Sensoren auf Gummi-Süßigkeiten gedruckt.

22.06.2018: Mit Mikroelektroden können elektrische Signale direkt am Gehirn oder Herz gemessen werden. Für solche Anwendungen werden jedoch weiche Materialien benötigt, auf denen die Elektroden bislang nur mit großem Aufwand angebracht werden konnten. Einem Team der Technischen Universität München (TUM) ist es jetzt gelungen, sie direkt auf verschiedene weiche Oberflächen zu drucken.

Mit vereinten Kräften ist es einem Team der TU München und des Forschungszentrums Jülich gelungen, ein Gummibärchen zu bedrucken. Was zunächst bestenfalls nach einer Spielerei klingt, könnte die medizinische Diagnostik verändern. Zum einen haben die Wissenschaftler um Prof. Bernhard Wolfrum kein Bild oder einen Schriftzug gedruckt, sondern ein Mikroelektroden-Array. Diese Bauteile bestehen aus einer großen Zahl an Elektroden und können Veränderungen der elektrischen Spannung in Zellen messen. Diese treten beispielsweise bei der Aktivität von Nerven- oder Muskelzellen auf.

Zum anderen haben Gummibärchen eine Eigenschaft, die für den Einsatz von Miroelektroden-Arrays an lebenden Zellen besonders wichtig sind: Sie sind weich. Mikroelektroden-Arrays gibt es schon lange. In ihrer ursprünglichen Form bestehen sie aus harten Materialien wie Silizium. Im Kontakt mit lebenden Zellen ergeben sich daraus verschiedene Nachteile. Im Labor verändern sich deshalb Form und Zusammenschluss der Zellen. Im Körper können sie Entzündungen auslösen und die Funktionsweise von Organen beeinträchtigen.

Rapid Prototyping mit Tintenstrahldrucker

Mit Elektroden-Arrays auf weichen Materialien lassen sich diese Probleme vermeiden. Dementsprechend intensiv wird an ihnen geforscht. Bislang wird dabei meist auf traditionelle Methoden gesetzt, die relativ langwierig sind und auf kostspielige Speziallabore angewiesen sind. „Druckt man die Elektroden stattdessen, kann man vergleichsweise schnell und günstig einen Prototyp herstellen und ihn ebenso problemlos überarbeiten“, sagt Bernhard Wolfrum, Professor für Neuroelektronik an der TUM. „Solch ein ‚Rapid Prototyping‘ erlaubt ganz neue Arbeitsweisen.“

Wolfrum und sein Team nutzen eine Hightech-Variante des Tintenstrahldruckers. Die Elektroden selbst werden mit kohlenstoffhaltiger Flüssigkeit gedruckt. Damit die Sensoren keine ungewollten Signale aufzeichnen, wird über die Kohlenstoffbahnen eine neutrale Schutzschicht aufgetragen.

Materialien für verschiedene Anwendungen

Das Verfahren erprobten die Forscher an verschiedenen Materialien, darunter das weiche Silikon PDMS (kurz für Polydimethylsiloxan), die häufig in biologischen Experimenten verwendete Substanz Agar und schließlich Gelatine, unter anderem in Form eines geschmolzenen und wieder erstarrten Gummibärchens. Jeder dieser Stoffe hat Eigenschaften, die sich für bestimmte Anwendungen besonders eignen. Beispielsweise können mit Gelatine beschichtete Implantate, unerwünschte Reaktionen im Gewebe verringern.

Dass die Sensoren zuverlässige Werte liefern, konnte das Team durch Experimente mit Zellkulturen nachweisen. Mit einer durchschnittlichen Breite von 30 Mikrometern ermöglichen sie darüber hinaus Messungen an einzelnen oder wenigen Zellen, was mit etablierten Druckmethoden schwierig zu erreichen ist.

„Die Schwierigkeit besteht im Feintuning aller Komponenten – sowohl der technischen Einstellungen des Druckers als auch der Zusammensetzung der Tinte“, sagt Nouran Adly, Erstautorin der Studie. „Im Fall von PDMS mussten wir beispielsweise auf einer von uns entwickelte Vorbehandlung zurückgreifen, damit die Tinte überhaupt auf der Oberfläche hält.“

Vielfältige Einsatzmöglichkeiten

Gedruckte weiche Mikroelektroden-Arrays könnten in verschiedenen Bereichen zum Einsatz kommen. Sie eignen sich nicht nur für einen Rapid-Prototyping-Ansatz in der Forschung, sondern könnten auch die Behandlung von Patienten verändern. „In Zukunft könnten ähnliche weiche Strukturen beispielsweise Nerven- oder Herzfunktion im Körper überwachen oder sogar als Schrittmacher dienen“, sagt Prof. Wolfrum. Derzeit arbeitet er mit seinem Team zum einen daran, auch komplexere, dreidimensionale Mikroelektroden-Arrays zu drucken. Zum anderen erforschen sie druckbare Sensoren, die nicht auf Spannungsschwankungen, sondern selektiv auf chemische Substanzen reagieren.

Originalveröffentlichung:
N. Adly, S. Weidlich, S. Seyock, F. Brings, A.Yakushenko, A. Offenhäusser, B. Wolfrum; "Printed Microelectrode Arrays on Soft Materials: From PDMS to Hydrogels"; Npj Flexible Electronics 2:1 (2018).

Fakten, Hintergründe, Dossiers

  • Mikroelektroden
  • Gelatine
  • Drucktechnologien
  • Mikroelektrodenarrays
  • Rapid Prototyping
  • Tintenstrahldrucker

Mehr über TU München

  • News

    Markierung von Proteinen mit Ubiquitin ermöglicht neue Forschung zur Zellregulation

    Menschliche Zelle verfügen über ein raffiniertes Regulierungssystem: die Markierung von Eiweißen mit dem kleinen Proteinmolekül Ubiquitin. Einem Team der Technischen Universität München (TUM) ist es jetzt erstmals gelungen, Proteine sowohl im Reagenzglas als auch in lebenden Zellen gezielt ... mehr

    Neue Methode erlaubt Spektroskopie an einzelnen Molekülen

    Während spektroskopische Messungen normalerweise über viele Moleküle mitteln, liefert eine an der Technischen Universität München (TUM) entwickelte, neue Methode präzise Aussagen über die Wechselwirkung genau eines Moleküls mit seiner Umgebung. Damit lassen sich beispielsweise schneller eff ... mehr

    Salz als Akteur bei allergischen Immunreaktionen

    Salz beeinflusst offenbar allergische Immunreaktionen. Ein Team um Prof. Christina Zielinski von der Technischen Universität München (TUM) konnte in Zellkulturen zeigen, dass Salz zur Entstehung von Th2-Zellen führt. Diese Immunzellen sind bei allergischen Erkrankungen wie Neurodermitis akt ... mehr

  • q&more Artikel

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

  • Autoren

    Dr. Josef Ecker

    Josef Ecker, Jahrgang 1978, studierte Biologie an der Universität in Regensburg. Er promovierte 2007 und forschte danach als Postdoc am Uniklinikum in Regensburg am Institut für Klinische Chemie. Nach einer anschließenden mehrjährigen Tätigkeit in der Industrie im Bereich der Geschäftsführu ... mehr

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.