q&more
Meine Merkliste
my.chemie.de  
Login  

News

Risiko Wasserstoffversprödung bewerten

Neue Simulation zur Kaltrissbildung bei hochfesten Stählen

© Fraunhofer IWM

Lichtmikroskopische Aufnahme des Schweißnahtgefüges einer Schweißverbindung.

© Fraunhofer IWM

Die neue Simulationsmethode hilft, Laserschweißprozesse zu optimieren: Lichtmikroskopische Aufnahme des Schweißnahtgefüges einer Laserschweißverbindung (links) im Vergleich mit der berechneten lokalen diffusiblen Wasserstoffkonzentration in Abhängigkeit von Temperatur-Zeit-Verlauf und Schweißeigenspannungen (rechts).

04.05.2018: Hochfeste Stähle spielen im modernen Fahrzeug- und Maschinenbau eine wesentliche Rolle. Werden diese Stähle bei der Herstellung von Bauteilen geschweißt, können bewegliche Wasserstoff-Atome im Material Probleme verursachen: Die Atome sammeln sich langsam an Bauteilbereichen mit hohen Eigenspannungen an und machen dort den Stahl spröde. Die Folge sind sogenannte Kaltrisse, die für Bauteilausschuss sorgen können. Dr. Frank Schweizer vom Fraunhofer-Institut für Werkstoffmechanik IWM hat nun eine Simulations-Methodik entwickelt, mit der Bauteilhersteller diese Kaltrissneigung bewerten und ihre Produktion entsprechend anpassen können.

Die Hersteller von Fahrzeug- und Maschinenbauteilen nutzen häufig hochfeste Stähle: zur Materialeinsparung für den Leichtbau und für crashrelevante Strukturbauteile, die besonders hohe Festigkeiten benötigen. Beim Schweißen dieser Bauteile tragen vielfältige Faktoren dazu bei, dass sich ungewollt feine Risse bilden können, sich ausbreiten und sogar möglicherweise zu Bauteilausschuss führen. Diese Faktoren sind leider nur sehr schwer oder gar nicht durch Experimente zu erfassen, beispielsweise müsste die Wasserstoffkonzentration an stark eingegrenzten Orten im Bauteilinneren während des Schweißens gemessen werden können. Eine weitere Schwierigkeit: Die Zeitspanne, in der die Risse entstehen, ist vergleichsweise lang – sie können während des Schweißens innerhalb weniger Sekunden oder auch noch nach mehreren Tagen danach auftreten. Bis heute gibt es aus diesen Gründen auch bei lasergeschweißten Bauteilen aus hochfesten Stählen häufig eine unangenehm hohe Ausschussrate in der Fertigung.

Einfluss von Wasserstofffallen abgebildet

Damit Bauteilhersteller die Ausschussrate bei hochfesten Stählen verringern können, hat Dr. Frank Schweizer aus der Gruppe »Mikrostruktur, Eigenspannungen« des Fraunhofer IWM im Rahmen seiner Dissertation bereits industriell eingesetzte Methoden der numerischen Schweißsimulation entsprechend weiterentwickelt. Damit kann er nun im Computer die Geschehnisse an ganz begrenzten Bauteilorten nachstellen. Das funktioniert sogar für sehr schnelle Temperaturwechsel zwischen Raum- und Schmelztemperatur, wie sie beim Schweißen auftreten. »Jetzt können wir die zeitliche Entwicklung der Einflussfaktoren und ihre Wechselwirkungen untereinander genau berechnen und virtuell beobachten«, erklärt Schweizer. Es sind Faktoren wie Härtegefüge, Eigenspannungen und die lokale Wasserstoffkonzentration, die im geschweißten Bauteil zur Rissbildung führen können. Neben dem zusätzlich eingebrachten Wasserstoff aus dem Schweißprozess löst sich durch die Schweißwärme der bereits im Stahl vorhandene Wasserstoff und wird beweglich beziehungsweise diffusionsfähig.

»Die Besonderheit an der neuen Methode ist, dass sie auch die Wirkung sogenannter Wasserstofffallen berücksichtigt«, so Schweizer. Er fand für unterschiedliche Laserschweißverbindungen heraus, dass bei geringen Wasserstoffkonzentrationen die Wasserstofffallen einen großen Einfluss auf den »beweglichen« Wasserstoffanteil haben. Bei höherem Wasserstoffgehalt wird das thermomechanische Materialverhalten zunehmend ausschlaggebend für die Rissbildung. »Die Wasserstoffatome sammeln sich langsam in dem schmalen Bereich der Wärmeeinflusszone an, in dem besonders hohe Zugeigenspannungen vorherrschen«, sagt Schweizer. Auch noch nachdem der Stahl abgekühlt ist, kann sich der Wasserstoff dann an diesen Stellen sammeln und das Material spröde machen. »Somit können auch noch nach Stunden und Tagen Risse entstehen, die das Aussortieren des Bauteils nötig machen«, erklärt Schweizer.

Simulation als Basis für die Optimierung des Laserschweißprozesses

Die Simulationsergebnisse dienen als Grundlage, Laserschweißprozesse zu optimieren und Bauteilausschuss nachhaltig zu verhindern: »Die Laser-Prozessparameter lassen sich nun so anpassen, dass die Wechselwirkungen der Kaltriss-Risikofaktoren so gering wie möglich bleiben«, sagt Schweizer. Auch genauere Vor- und Nachwärmtemperaturen sowie die passgenaue Glühdauer kann aus der Simulation ermittelt werden. »Auch bei der Planung von Bauteilen nutzt die Simulation: Anhand der Daten lassen sich günstigere Bauteilformen ableiten, um den Eigenspannungszustand lokal zu verbessern und Risse zu vermeiden«, erläutert Schweizer. In einem nächsten Forschungsschritt will er den Einfluss unterschiedlicher Werkstoffe und Bauteiloberflächen auf die sogenannte Effusion des Wasserstoffs genauer untersuchen, um Vor- und Nachwärmprozeduren zukünftig noch präziser auslegen zu können. Zudem wird er die neue Methodik auf weitere Stähle und andere Schweißverfahren anwenden.

Als Datengrundlage für die von Schweizer erweiterten numerischen Schweißsimulationen dienten charakteristische Werkstoffkennwerte dreier unterschiedlicher hochfester Stähle: eines Wälzlager-, eines Martensitphasen- und eines Feinkornbaustahls. Diese charakteristischen Werkstoffkennwerte ermittelte er sowohl experimentell als auch mit neuen und eigenen rechnerischen Auswertemethoden. Seine Simulationsmodelle testete Schweizer erfolgreich an drei industriell eingesetzten Bauteilen, die mit verschiedenen Schweißverfahren gefügt wurden: dem Wärmeleitschweißen sowie dem Tiefschweißen per Faserlaser und CO2-Laser.

Fakten, Hintergründe, Dossiers

Mehr über Fraunhofer-Institut IWM

  • News

    Diamantreibung

    An Schneidwerkzeugen, Lagern und Dichtungen helfen Diamantbeschichtungen, Reibung und Verschleiß zu reduzieren. Wasser vermindert die Reibung dabei erheblich. Die Gründe dafür sind bislang nicht vollständig verstanden. Das Fraunhofer-Institut für Werkstoffmechanik IWM und das Institut für P ... mehr

    Sichere Nutzung von Wasserstoff für die Energiewende

    Am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg startet ein Projekt zur Erforschung des Einflusses von Wasserstoff auf die Sicherheit von Erdgasrohrleitungen, wenn diese wasserstoffhaltige Gase führen. Die Projektpartner entwickeln gemeinsam ein Auslegungs-, Bewertungs- und Übe ... mehr

    Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

    Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst ent ... mehr

Mehr über Fraunhofer-Gesellschaft

  • News

    Zebrafischeier dank Maschinellem Lernen automatisch sortieren

    Zebrafische besitzen fast alle Gene, die Menschen auch haben. Daher eignen sich ihre Eier als Modellorganismus für die Gen- und Wirkstoffforschung. Die Probenvorbereitung erfolgt bislang manuell – ein zeitaufwändiger Prozess. Eine neue Technologie vereinzelt und sortiert die Fischeier mithi ... mehr

    Laser mustern Lotuseffekt auf Flugzeuge

    Filigrane Gravuren auf Außenflächen von Flugzeugen sollen sicherstellen, dass die Luftströmung glatt bleibt und so den Luftwiderstand des Flugzeugs gering hält. Dafür haben Ingenieure am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, an der Technischen Universität Dresden und bei ... mehr

    Oberflächen mit Highspeed veredeln

    Präzise und gut, aber zu langsam – so lassen sich die meisten Laserverfahren für die Oberflächenbearbeitung beschreiben. Im EU-Forschungsprojekt ultraSURFACE entwickelt das Fraunhofer-Institut für Lasertechnik ILT aus Aachen zusammen mit neun internationalen Partnern bis zum Ende des Jahres ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.