q&more
Meine Merkliste
my.chemie.de  
Login  

News

Forscher beobachten wachsende Nanodrähte live

Röntgenuntersuchung zeigt erstmals genaue Details des selbstkatalysierten Wachstums

DESY, Satishkumar Kulkarni/Thomas Keller

Nadel-Wald: Nanodrähte auf einem Siliziumträger, aufgenommen am DESY NanoLab.

12.02.2018: An DESYs Röntgenlichtquelle PETRA III haben Wissenschaftler das Wachstum winziger Drähte aus Galliumarsenid live verfolgt. Die Beobachtungen zeigen genaue Details der Wachstumsprozesse, die für Form und Kristallstruktur der kristallinen Nanodrähte verantwortlich sind. Diese Erkenntnisse bieten auch neue Ansätze, zukünftig Nanodrähte mit speziellen Eigenschaften für bestimmte Anwendungen maßzuschneidern. Die Forscher um Philipp Schroth von der Universität Siegen und dem Karlsruher Institut für Technologie (KIT) stellen ihre Arbeit im Fachblatt „Nano Letters“ vor. Galliumarsenid (GaAs) ist ein breit verwendeter Halbleiterwerkstoff, der beispielsweise in Infrarotfernbedienungen, in der Hochfrequenztechnik für Handys, für die Umwandlung von elektrischen Signalen in Licht für Glasfaserkabel und auch für Solarzellen in der Raumfahrt eingesetzt wird.

Für die Herstellung der Drähte nutzen die Wissenschaftler den sogenannten selbstkatalysierenden Vapour-Liquid-Solid-Prozess (VLS-Prozess). Dabei werden zuerst winzige flüssige Galliumtröpfchen auf einen rund 600 Grad Celsius heißen Siliziumkristall aufgebracht. Danach wird dieser Wafer mit gerichteten Strahlen aus Galliumatomen und Arsenmolekülen bedampft, die sich in den Galliumtröpfchen auflösen. Nach einer gewissen Zeit setzt das Kristallwachstum der Nanodrähte unterhalb der Tröpfchen ein, wobei die Tröpfchen Schritt für Schritt nach oben geschoben werden. Die Galliumtröpfchen wirken hierbei als Katalysator für das Längenwachstum der Drähte. „Dieser Prozess ist zwar recht etabliert, bisher lässt sich die Kristallstruktur so hergestellter Nanodrähte allerdings noch nicht gezielt steuern. Um dies zu erreichen, müssen erst die Details des Wachstums verstanden werden“, betont Ko-Autor Ludwig Feigl vom KIT.

Um den Wachstumsprozess live zu beobachten, installierte die Gruppe um Schroth eine mobile, speziell für Röntgenuntersuchungen entwickelte und vom Bundesministerium für Bildung und Forschung (BMBF) finanziell unterstützte Versuchskammer des KIT im brillanten Röntgenstrahl von DESYs Forschungslichtquelle PETRA III. Im Minutentakt machten die Forscher Röntgenaufnahmen an der Messstation P09, mit denen sich gleichzeitig die interne Struktur und der Durchmesser der wachsenden Nanodrähte bestimmen lassen. Ergänzend dazu vermaßen die Wissenschaftler die fertiggestellten Nanodrähte mit dem Rasterelektronenmikroskop des DESY NanoLabs. „Um solche komplexen Messungen überhaupt durchführen zu können, haben wir die Wachstumsbedingungen zuvor über einen Zeitraum von sechs Monaten am UHV Analysis Lab des KIT weitestgehend optimiert“, erklärt Ko-Autor Seyed Mohammad Mostafavi Kashani von der Universität Siegen.

In etwas mehr als vier Stunden wuchsen die Drähte auf eine Länge von rund 4000 Nanometern heran. Ein Nanometer (nm) ist ein millionstel Millimeter. Dabei wurden die Drähte allerdings nicht nur länger, sondern auch dicker: Ihr Durchmesser stieg von anfangs rund 20 nm auf bis zu 140 nm an der Spitze des Drahtes, womit sie immer noch rund 500 Mal dünner sind als ein menschliches Haar.

„Spannenderweise zeigten die elektronenmikroskopischen Abbildungen eine etwas andere Form der Nanodrähte“, sagt Ko-Autor Thomas Keller vom DESY NanoLab. Zwar waren die Drähte – in Übereinstimmung mit den Röntgendaten – oben dicker als unten an der Kontaktfläche zum Substrat. Allerdings war der im Elektronenmikroskop gemessene Durchmesser im unteren Teil des Drahts größer als mittels Röntgenstrahlung beobachtet.

„Wir haben herausgefunden, dass für das Wachstum der Nanodrähte nicht nur der VLS-Prozess verantwortlich ist, sondern auch eine zweite Komponente, die wir in diesem Experiment erstmals direkt beobachten und quantifizieren konnten“, erklärt Schroth. „Dieses sogenannte Seitenwand-Wachstum lässt die Drähte zusätzlich in die Breite wachsen.“ Unabhängig vom VLS-Prozess lagert sich aufgedampftes Material vor allem im unteren Teil des Nanodrahts direkt an den Seitenwänden an. Aus dem Vergleich der Röntgenmessung zu einem frühen Zeitpunkt des Wachstums mit der elektronenmikroskopischen Messung am Ende des Wachstums lässt sich dieser zusätzliche Beitrag bestimmen.

Außerdem werden im Laufe des Wachstumsprozesses die Galliumtröpfchen durch das fortwährende Aufdampfen von weiterem Gallium kontinuierlich größer. Damit verändert sich aber auch deren Form, welche die Forscher mit Hilfe von Wachstumsmodellen ableiten konnten. Das hat einen weitreichenden Effekt: „Mit der Tröpfchengröße ändert sich der Kontaktwinkel zwischen den Tröpfchen und der Oberfläche der Drähte. In bestimmten Fällen führt das dazu, dass der Draht plötzlich in einer anderen Kristallstruktur weiterwächst“, sagt Feigl. Während die feinen Drähte zunächst in einer hexagonalen, sogenannten Wurtzit-Struktur kristallisierten, änderte sich dieses Verhalten nach einiger Zeit, und die Drähte wuchsen in einer kubischen Zinkblende-Struktur weiter. Diese Änderung ist für Anwendungen wichtig, da die Struktur und die Form der Nanodrähte große Auswirkungen auf die Materialeigenschaften haben.

Mit diesen detaillierten Erkenntnissen lässt sich das Wachstum nicht nur besser verstehen, sie bieten auch Ansätze, zukünftig Nanodrähte mit speziellen Eigenschaften für bestimmte Anwendungen maßzuschneidern – etwa um den Wirkungsgrad einer Solarzelle oder eines Lasers zu erhöhen.

Originalveröffentlichung:
"Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in situ X‐ray Diffraction"; Philipp Schroth, Julian Jakob, Ludwig Feigl, Seyed Mohammad Mostafavi Kashani, Jonas Vogel, Jörg Strempfer, Thomas F. Keller, Ullrich Pietsch, and Tilo Baumbach; Nano Letters; 2018

Fakten, Hintergründe, Dossiers

Mehr über Deutsches Elektronen-Synchroton DESY

Mehr über KIT

  • News

    Hightech-Zahnersatz: Mit Nanotechnik gegen Bakterien

    Gefäßerweiternde Stents, „Labs-on-Chip“ für Analysen auf kleinster Fläche, 3-D-Zellkultursysteme für die Geweberekonstruktion: Mikrotechnik wird für die Medizintechnik immer wichtiger. Auch in der Implantologie öffnet sie neue Potenziale. Wissenschaftler des Karlsruher Instituts für Technol ... mehr

    Wasseraufbereitung: Neues Verfahren eliminiert hormonelle Mikroschadstoffe

    Hormone und andere Mikroschadstoffe gefährden die Gesundheit, wenn ihre Rückstände über das Trinkwasser in den Körper gelangen. Breit einsetzbare Lösungen zu ihrer Beseitigung gibt es bislang aber nicht. Das Karlsruher Institut für Technologie (KIT) hat nun ein Verfahren entwickelt, mit dem ... mehr

    Neue Elektronische Nase erkennt unterschiedliche Gerüche

    Frisch gemahlener Kaffee, Popcorn, Bioabfall oder Rauch – im Laufe unseres Lebens lernen wir die verschiedensten Gerüche kennen und können sie dank unserer Nase unterscheiden, auch ohne die Quelle des Geruchs zu sehen. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben in ... mehr

  • q&more Artikel

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Stefan Bräse

    Stefan Bräse, geb. 1967, studierte Chemie in Göttingen und promovierte dort 1995 an der Universität. Nach Postdoktoraten in Uppsala/S und La Jolla/USA begann er an der RWTH ­Aachen mit seinen eigenständigen Arbeiten (Habilitation in organischer Chemie 2001) und wechselte 2001 als Professor ... mehr

    Dr. Sidonie Vollrath

    Sidonie Vollrath, geb. 1984, studierte Chemie in Karlsruhe und promovierte 2012 am KIT in der Gruppe von Prof. S. Bräse. ­Während des Studiums und der Promotion ­absolvierte sie Forschungsaufenthalte an der University of Wisconsin in Madison bei Prof. H. Blackwell sowie an der New York Univ ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.