q&more
Meine Merkliste
my.chemie.de  
Login  

News

Interaktive Mikroskopie für Biologen

Ein revolutionärer Ansatz zur Steuerung embryonaler Entwicklung

Mittasch et al. / MPI-CBG

Dresdner Forscher induzieren Flüsse in Embryonen um so deren Entwicklung zu steuern.

07.02.2018: Bewegungen innerhalb von Zellen, wie Strömungen des flüssigen Zytoplasmas, sind vermutlich essenziell für die embryonale Entwicklung. Geprüft werden konnte diese Annahme jedoch nicht, da geeignete Methoden fehlten, intrazelluläre Strömungen zu verändern. Nun haben Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden eine Möglichkeit gefunden, Bewegungen in lebendigen Embryonen gerichtet zu steuern. Dem Team um Moritz Kreysing gelang es, mit dieser neuen Technologie, Entwicklungsprozesse von Embryonen aktiv zu verändern. Die Studie validiert Hypothesen zur Polarisation von Embryonen und verdeutlicht, dass die Zukunft der Mikroskopie interaktiv ist.

Eine zentrale Frage der Biologie ist, wie sich aus einer befruchteten Eizelle ein kompletter Organismus entwickeln kann. Die molekularbiologische Forschung ermöglichte in den letzten Jahren tiefe Einblicke in dieses Phänomen embryonaler Entwicklung. Ein zentraler Aspekt jedoch blieb unbeantwortet und war methodisch sehr schwer zugänglich. Damit sich ein Organismus korrekt entwickeln kann, müssen Biomoleküle an die richtigen Stellen des wachsenden Embryos gelangen, ähnlich wie Baumaterial auf einer Baustelle. Ein frühes und wichtiges Beispiel für diese Umverteilung von Material ist die biochemische Polarisation befruchteter Eizellen. Dieser Prozess definiert die spätere Körperachse des Tiers, d.h. zum Beispiel wo der Kopf eines Wurmes und wo sein Schwanz wachsen wird. Durch welche Mechanismen polarisationsrelevante Moleküle verteilt werden, blieb jedoch lange unbeantwortet, da eine geeignete Methode fehlte, schonend in den intrazellulären Transport lebender Embryos einzugreifen.

Ein Forscherteam um Moritz Kreysing in Zusammenarbeit mit weiteren Gruppen am MPI-CBG, der Fakultät für Mathematik und dem Biotechnologischen Zentrum der TU Dresden ist es nun gelungen, mit ihrer nicht-invasiven Lasertechnologie FLUCS (englisch:“focused-light-induced-cytoplasmic-streaming“) kontrollierte Ströme in lebenden Embryonen zu erzeugen. Mit diesem revolutionären Werkzeug konnten die Forscher die Bedeutung der Bewegung des Zytoplasmas für die Polarisation der Eizelle testen und somit bestehende Hypothesen validieren und ergänzen.

Matthäus Mittasch, Doktorand und Erstautor der Studie, schwärmt: „Mit FLUCS wird die Mikroskopie sich entwickelnder Embryonen plötzlich interaktiv“. Und tatsächlich: Angeleitet durch realistische Computersimulationen gelang es den Forschern sogar, die Körperachse von Wurm-Embryonen mit Hilfe von FLUCS umzukehren, was die räumlich gespiegelte Entwicklung des Wurms einleitete. Forschungsgruppeleiter Moritz Kreysing, der auch dem Zentrum für Systembiologie Dresden angehört, kommt zu dem Schluss: „Die Möglichkeit das Innere von Zellen zu bewegen wird grundlegend zum Verständnis beitragen wie sich Zellen bewegen, wie sie auf externe Signale reagieren und wie sie sich teilen. Weiterhin eröffnet sich mit FLUCS erstmals die Möglichkeit, experimentell nachzuvollziehen wie lebende Organismen aus der Interaktion biochemischer Reaktionen und physikalischer Bewegung hervorgehen.“ Forscher sind sich einig: In der Medizin hat FLUCS das Potenzial, embryonale Entwicklungsstörungen besser zu verstehen, In-vitro-Fertilisation zu verbessern und die Erprobung neuer Medikamente zu vereinfachen.

Originalveröffentlichung:
Matthäus Mittasch, Peter Groß, Michael Nestler, Anatol W. Fritsch, Christiane Iserman, Mrityunjoy Kar, Matthias Munder, Axel Voigt, Simon Alberti, Stephan W. Grill and Moritz Kreysing; "Non-invasive perturbations of intracellular flow reveal physical principles of cell organization"; Nature Cell Biology; 5. Februar 2018

Fakten, Hintergründe, Dossiers

  • Polarisation
  • Zellen
  • Zellbiologie

Mehr über MPI für molekulare Zellbiologie und Genetik

  • News

    Wie Organe während des Wachstums ihre Form bewahren

    Bereits während der frühen Entwicklung eines Embryos nehmen viele Gewebe und Organe ihre endgültige Form an. Diese muss im Laufe des Wachstums eines Organismus beibehalten werden. Da die richtige Form eines Gewebes oft entscheidend ist für dessen Funktion, ist es wichtig zu verstehen, wie d ... mehr

    Virtuelle Leber könnte Zahl der Tierversuche verringern

    Die Leber ist maßgeblich an der Entgiftung des Körpers beteiligt. Dies macht sie besonders anfällig für Schäden durch Medikamente. Gallestauung ist daher eine häufige Nebenwirkung neuer Wirkstoffe, beispielsweise bei Überdosierungen. Neue Wirkstoffe müssen daher in Tierversuchen getestet we ... mehr

    AutoPilot: Das selbstfahrende Mikroskop

    Die Lichtblattmikroskopie ist eine relativ neue Methode, mit der die Entwicklung und Funktionsweise lebender Organismen abgebildet und erforscht werden kann. Um jedoch durchgehend gestochen scharfe Bilder zu erhalten, müssen diese Mikroskope im laufenden Betrieb immer wieder manuell nachjus ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Gendefekte ohne Folgen

    Viele Krankheiten werden durch Gendefekte verursacht. Ihr Schweregrad kann jedoch zwischen einzelnen Patienten variieren, sodass auch milde Verlaufsformen auftreten können. Wissenschaftler des Max-Planck-Instituts für Herz- und Lungenforschung in Bad Nauheim haben nun einen molekularen Mech ... mehr

    Ein molekularer Schalter für das X-Chromosom

    Im Verlauf der Entwicklung müssen eine Vielzahl an Genen zu unterschiedlichen Zeitpunkten an- oder abgeschaltet werden. Eine besondere Herausforderung besteht, wenn in einer Zelle zwei Kopien des gleichen Gens unterschiedliche Aktivierungszustände einnehmen sollen, wie es zum Beispiel bei d ... mehr

    Peptid gegen Kannibalismus

    Ein Wurm, zu dessen bevorzugten Speisen ausgerechnet Wurmlarven zählen, muss höllisch aufpassen, dass er nicht aus Versehen den eigenen Nachwuchs verzehrt. Das gilt umso mehr, als optische Reize im Fall von Pristionchus pacificus keine Rolle spielen können – der Fadenwurm ist praktisch blin ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.