q&more
Meine Merkliste
my.chemie.de  
Login  

News

Hirnsignale für Wirkstoff-Screening

TheDigitalArtist, pixabay.com, CC0

Symbolbild

02.02.2018: Ein internationales Team unter Leitung von ETH-Forschenden hat eine Technik entwickelt, um den Effekt von Wirkstoffen am Gehirn mithilfe von elektrischen Hirnsignalen genauer zu beurteilen. Das könnte besonders in der frühen Entwicklungsphase von Medikamenten gegen Epilepsie von Nutzen sein.

Für Hirnkrankheiten gibt es noch immer vergleichsweise wenige Therapien. Das liegt unter anderem an der schwierigen Entwicklung neuer Medikamente, denn die Wirkungen und Nebenwirkungen einer Substanz am Gehirn lassen sich nicht so einfach nachweisen. Standard in der Medikamentenforschung sind Verhaltensstudien an Nagetieren. Dabei geben Forschende den Tieren einen neuen Wirkstoff und dokumentieren deren Verhaltensmuster. Diese Studien sind wichtig, doch bei der Suche nach neuen Wirkstoffen im Hochdurchsatz-Screening sind sie ungeeignet. Bei diesem Verfahren, das unter anderem in der Pharmaindustrie zum Einsatz kommt, werden Zehntausende Substanzen parallel getestet. Das ist mit Verhaltensbeobachtungen an Nagetieren nicht möglich.

Mehmet Fatih Yanik, Professor am Labor für Neurotechnologie, hat deshalb mit einer internationalen Arbeitsgruppe ein neues Testmodell entwickelt. Damit kann man die Wirkungen und Nebenwirkungen von mehreren Substanzen gleichzeitig und in grosser Zahl untersuchen.

Ins Gehirn geschaut

«Das Gehirn besteht aus hochkomplexen, vernetzten Strukturen, die auf vielschichtige Weise miteinander kommunizieren», erklärt der Physiker und Ingenieur Yanik. Beim Menschen können diese Signale von der Schädeloberfläche abgeleitet werden. Informationen vieler Nervenzellen werden zu einer Hirnstromkurve, dem Elektroenzephalogramm (EEG), zusammengefügt. Ärzte nutzen diese Wellenmuster, um Schlaf zu analysieren, Krankheiten wie Epilepsie zu erkennen oder die Wirksamkeit von Medikamenten zu testen. Bei der frühen Entwicklung von neuen Wirkstoffen gegen Hirnkrankheiten fehlte bisher ein vergleichbares Werkzeug.

Yanik und sein Team suchten deshalb nach einer Möglichkeit, um die Hirnaktivitität anhand elektrophysiologischer Signale auszulesen und zu analysieren. Bei Larven vom Zebrafisch als Modellorganismus wurden sie fündig. Die fast durchsichtigen Larven sind mit ihren zwei Millimetern Körperlänge winzig. Dadurch ist es möglich, viele von ihnen parallel zu untersuchen. Die Forschenden platzierten die Larven in einem Gel in dünnen Glasröhrchen, sodass sie sich für die Dauer des Versuchs nicht bewegten. Durch diesen Trick gelang es den Forschenden, die Elektroden zur Ableitung der elektrischen Hirnsignale direkt im Gehirn der Larven anzubringen: Dadurch gelingt es ihnen, die Information direkt dort auszulesen, wo sie entsteht.

Epilepsieauslöser nachgestellt

In ihren Experimenten verwendeten die Wissenschaftler Larven, die eine Mutation am SCN1A-Gen haben. Bei Menschen ist diese Veränderung mit verschiedenen Formen der Epilepsie im Kindesalter gekoppelt wie dem Dravet-Syndrom. Kinder mit Dravet-Syndrom erleiden bereits im ersten Lebensjahr schwere epileptische Anfälle und haben häufig eine verzögerte geistige Entwicklung. Die Anfälle lassen sich nur schwer mit Medikamenten behandeln und können unter anderem durch Licht ausgelöst werden.

Dieselbe Lichtempfindlichkeit haben Yanik und sein Team nun bei den Larven mit der SCN1A-Genmutation nachgewiesen. Die Forschenden setzten die Larven im Experiment Lichtblitzen aus und erfassten die elektrischen Signale, die den Zellzwischenräumen von nahe beieinander liegenden Nervenzellen entstammen. Im Prinzip ist das, als ob man sich in eine Telefonzentrale setzte und die Kommunikation der umliegenden Telefone belauschte.

Mit einem neu entwickelten Algorithmus werteten die Forschenden die Signale aus dem Gehirn aus. «In unseren Experimenten an den Larven mit Gendefekt haben wir die typischen Signale gefunden, die bei Anfällen auftreten. Das war bei den gesunden Larven nicht der Fall», berichtet Yanik.

Gesunde Vielfalt im Gehirn

Während bei den gesunden Zebrafischlarven vielschichtige lokale Hirnaktivitätsmuster aufgezeichnet wurden, waren diese bei den Larven mit Gendefekt viel einfacherer Natur. Das entspricht Beobachtungen am Menschen, wonach Hirnströme bei Patienten mit Parkinson oder Schizophrenie weniger komplex sind. Je vielschichtiger Nervenzellen miteinander kommunizieren, desto gesünder scheint das Gehirn.

Wenn es nun gelänge, mit Wirkstoffen die Komplexität von Hirnsignalen zu erhöhen und dies als therapeutisches Ziel zu definieren, hätte man endlich einen Messparameter direkt aus dem Gehirn, um Wirkungen und Nebenwirkungen chemischer Substanzen zu bewerten, ist Yanik überzeugt. Das wäre in der Arzneimittelforschung ein grosser Fortschritt.

Die Versuche von Yaniks Arbeitsgruppe sind ein vielversprechender Schritt in diese Richtung. Denn die Wissenschaftler haben in ihrem Testmodell auch gezeigt, wie 31 pharmakologische Substanzen die Hirnströme beeinflussen und dass sich bei einigen Wirkstoffen tatsächlich die Komplexität der Hirnaktivitätsmuster verbessert. Ihr neues, auf Hirnsignalen basierendes Modell haben die Forscher mit einem verbesserten Verhaltenstest validiert.

Hochdurchsatz für die Pharmaindustrie

Doch lassen sich die Ergebnisse zur Hirnaktivität von Zebrafischlarven auf Menschen übertragen? «Obwohl die Hirnanatomie zwischen Mensch und Zebrafisch sehr verschieden ist, gibt es aus biophysikalischer Sicht Ähnlichkeiten. Die elektrischen Signale, die von Nervenzellen gebildet werden, sind ein sehr grundlegender Parameter», sagt Yanik. Wenn Medikamente, die heute schon Menschen helfen, auch bei diesen Larven wirken, spreche das dafür, dass dieses Modell auch Krankheiten am Menschen abbilden könne. Somit sei eine Übertragbarkeit zumindest teilweise möglich.  

Ihr Testmodell haben die Wissenschaftler so weit entwickelt, dass es sich auch für Hochdurchsatz-Screening eignet. Yanik will somit nicht weniger als einen neuen Weg in der pharmazeutischen Forschung anregen, um schon beim Wirkstoff-Screening Wirkungen und Nebenwirkungen am Gehirn miteinzubeziehen.

Originalveröffentlichung:
Eimon PM, Ghannad-Rezaie M, De Rienzo G, Allalou A, Wu Y, Gao M, Roy A, Skolnick J, Yanik MF. Brain activity patterns in high-throughput electrophysiology screen predict both drug efficacies and side effects. Nature Communications 2018. 9:219.

Fakten, Hintergründe, Dossiers

  • Epilepsie
  • Gehirn
  • Wirksamkeit von Med…
  • Wirksamkeitstests
  • Wirkstoffentwicklung
  • Hirnaktivität
  • Nebenwirkungen

Mehr über ETH Zürich

  • News

    Kälte führt zu schlanken Nachkommen

    Kälte vor der Zeugung führt bei Nachkommen zu mehr braunem Fettgewebe und schützt diese vor Übergewicht und Stoffwechselerkrankungen. Informationsüberträger sind die Spermien, wie Wissenschaftler bei Mäusen herausfanden. Ein ähnlicher Zusammenhang zeigt sich auch bei Menschen. Wer viel brau ... mehr

    Feinchemikalien umweltfreundlich und effizient herstellen

    Chemieingenieure der ETH Zürich entwickelten einen neuen Katalysator, mit dem kostengünstig und auf umweltfreundliche Weise zwei Kohlenstoffatome miteinander verbunden werden können. Die Technologie könnte schon bald in der Industrie zum Einsatz kommen. Die chemische Industrie produziert n ... mehr

    Forscher bilden menschliches Knochenmarkgewebe nach

    Täglich werden im Knochenmark mehrere Milliarden Blutzellen gebildet. Für die ständige Zufuhr sorgen dabei Blutstammzellen, die sich in speziellen Nischen im Knochenmark befinden. Sie können sich selbst vermehren und zu roten und weissen Blutkörperchen ausreifen, die aus dem Knochenmark ins ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.