q&more
Meine Merkliste
my.chemie.de  
Login  

News

Durch die Höhle schleusen

Biochemiker kommen dem Transport großer Proteine durch bakterielle Zellmembranen auf die Spur

Journal of Biological Chemistry

Vier TatC-Moleküle (blau) lagern sich ringförmig um vier TatB-Moleküle (grün) und bilden so im Zentrum eine Höhle, in die sich das zu transportierende Protein von unten einlagern kann.

25.01.2018: Alle Zellen sind von einer Membran umgeben, die das biochemische Milieu im Innern gewährleistet und den Stoffaustausch mit der Umwelt regelt. In jeder Zellwand gibt es dafür eine Vielzahl von Transportern, die nur eine Sorte von Molekülen passieren lassen. Im Fall von Kleinstmolekülen wie beispielsweise Wasser bilden die verantwortlichen Transporter dafür winzige Poren in der Membran, die nach dem Vorgang sofort wieder verschwinden. Wie aber werden tausendfach größere Proteine durch Membranen geschleust, ohne dass dabei ein großes Leck entsteht? In einer Studie haben die Teams um Prof. Dr. Matthias Müller vom Institut für Biochemie und Molekularbiologie und dem Sonderforschungsbereich 746 sowie Prof. Dr. Bettina Warscheid vom Institut für Biologie II und dem Exzellenzcluster BIOSS Centre for Biological Signalling Studies der Universität Freiburg, Details über den Aufbau eines solchen Transporters für Eiweißmoleküle herausgefunden.

Die Forschenden untersuchten den so genannten Tat-Transporter, der in den Zellmembranen von Bakterien vorkommt. Er schleust bestimmte Proteine, die Tat-Substrate, aus diesen heraus. Der Transporter besteht aus drei Komponenten, die als TatA, TatB und TatC bezeichnet werden. Sie sind im Ruhezustand in der Membran verteilt und verbinden sich erst zu einem gemeinsamen Transporter, wenn ein Tat-Substrat an TatC bindet. Bisher ist jedoch nur wenig darüber bekannt, wie genau sich die drei Komponenten zusammenschließen.

Schon in einer früheren Studie hatten die Forschenden herausgefunden, dass die chemische Substanz Dicyclohexylcarbodiimid (DCCD) den Tat-Transport blockiert. Die Wissenschaftlerinnen und Wissenschaftler identifizierten nun eine ganz bestimmte Position auf TatC, die sich durch DCCD chemisch verändern lässt, wodurch wiederum der Kontakt mit dem Tat-Substrat gehemmt wird. Diese Position ist nicht auf der Oberfläche von TatC lokalisiert, sondern in dem Teil, der tief in der Membran verborgen ist. DCCD hemmt also nicht das primäre Andocken des Tat-Substrates, sondern dessen tiefes Eindringen in die Membran entlang des TatC-Moleküls. Somit konnten die Teams nachweisen, dass bei der Zusammenlagerung mehrerer TatC- und TatB-Komponenten eine Höhle entsteht, in die sich das Tat-Substrat von der einen Seite der Membran einlagert. Erst in einem nächsten, noch ungeklärten Schritt würde sich diese Höhle nach außen öffnen, wofür dann TatA benötigt wird.

Der Tat-Transporter könnte zukünftig der Entwicklung neuartiger Antibiotika dienen: Einige für den Menschen schädliche Bakterien benutzen den Tat-Transport, um Eiweißmoleküle zu exportieren, mit Hilfe derer sie den Kontakt zu den menschlichen Wirtszellen herstellen. Idealerweise sollte ein Antibiotikum nur den Stoffwechsel von Bakterien und nicht den von Patientinnen und Patienten hemmen. Da der Tat-Transporter in menschlichen Zellen nicht vorkommt, wäre er somit ein geeigneter antibiotischer Angriffspunkt.

Originalveröffentlichung:
A. S. Blümmel. F. Drepper, B. Knapp, E. Eimer, B. Warscheid, M. Müller, J. Fröbel; "Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide"; J Biol. Chem.; 2018

Fakten, Hintergründe, Dossiers

  • Zellmembranen
  • Stoffwechsel
  • Molekularbiologie
  • Zellstoffwechsel
  • Dicyclohexylcarbodiimid

Mehr über Uni Freiburg

  • News

    Gene ins Visier nehmen

    Alle lebenden Zellen haben Mechanismen entwickelt, um ihre DNA gegen Beschädigungen zu schützen – ob verursacht bei der Zellteilung, durch ultraviolettes Licht oder Chemikalien. Biologinnen und Biologen um Prof. Dr. Ralf Reski von der Universität Freiburg haben nun herausgefunden, dass Prot ... mehr

    RNA-Schere mit mehreren Funktionen

    CRISPR/Cas-Systeme gelten als viel versprechende „Genscheren“: Sie kommen im Genome Editing zum Einsatz, um Pflanzen, Tiere oder Mikroorganismen durch zielgerichtete Veränderung der DNA zu untersuchen – und möglicherweise lassen sich mit ihnen sogar Gendefekte korrigieren. Ein Forschungstea ... mehr

    Fliegendes Labor zur Blutanalyse

    Die Max-Planck-Gesellschaft hat den Antrag für die Entwicklung eines kleinen, autonom arbeitenden Analysesystems bewilligt, das verschiedene Hormone im Blut von Vögeln im Freiland messen soll. Das Projekt „FlyMiBird" wird mit 1,52 Millionen Euro über vier Jahre gefördert. Projektpartner sin ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Platform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.