q&more
Meine Merkliste
my.chemie.de  
Login  

News

Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Entdeckung könnte den Weg zu neuen diagnostischen Werkzeugen ebnen

© Madhavi Krishnan / University of Zurich

Forschende können die effektive elektrische Ladung eines Moleküls feststellen, indem sie dieses in einem Potentialtopf fangen und messen, wie lange es darin bleibt.

16.01.2018: Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft undenkbar: Viele biologische Prozesse beruhen auf Interaktionen von Molekülen wie Proteinen, bei denen die Ladung eine entscheidende Rolle spielt. Doch die Ladung eines Proteins in einer wässrigen Umgebung – das normale Umfeld in einem lebenden Organismus – lässt sich mit herkömmlichen Ansätzen kaum genau bestimmen.

Im Rahmen einer SNF-Förderungsprofessur an der Universität Zürich hat Madhavi Krishnan eine Methode entwickelt, um die Ladung eines einzelnen Moleküls in Lösung zu messen. Ihr Vorgehen beschrieb sie in einer Reihe von Artikeln in den Fachzeitschriften Nature Nanotechnology, Physical Review E und Journal of Chemical Physics. Diese Entdeckung könnte den Weg zu neuen diagnostischen Werkzeugen ebnen, da viele Krankheiten auf molekularer Ebene damit zusammenhängen, dass ein Protein aufgrund einer veränderten elektrischen Ladung nicht mehr einwandfrei arbeitet.

Die Ladung eines Moleküls kann sich beträchtlich verändern, je nachdem, ob es sich in Gasphase oder Lösung befindet. Der Grund für diesen Unterschied liegt in den komplexen Wechselwirkungen mit den umgebenden Flüssigkeitsmolekülen. Deshalb ergeben die üblichen Gasphasemessungen keine direkten Informationen zum Verhalten des Moleküls in seinem biologischen Umfeld.

"Wie Kinder beim Ballspiel"

Moleküle in Lösung sind ständig in Bewegung, da sie dauernd und rein zufällig zusammenstossen. Krishnan und die Doktorandin Francesca Ruggeri nutzten dieses als Brownsche Bewegung bekannte Phänomen, um die effektive Ladung eines Moleküls direkt in der Lösung zu messen.

Zuerst fingen sie das Molekül in einem sogenannten Potentialtopf. Das ist die anschauliche Bezeichnung für den Zustand eines Moleküls bei minimaler potentieller Energie. Durch die fortwährenden Zusammenstösse mit den hüpfenden Wassermolekülen droht dem Molekül dabei ständig der Herauswurf aus dem Topf.

"Die Situation lässt sich mit Kindern vergleichen, die in einer Grube mit einem Ball spielen", erklärt Krishnan. "Der Ball ist das untersuchte Proteinmolekül, die Kinder sind die Wassermoleküle. Der Ball müsste einen ziemlich heftigen Tritt erhalten, um aus der Grube zu fliegen."

Je höher die effektive Ladung des Moleküls, desto grösser ist die Tiefe des Potentialtopfs und desto geringer ist folglich die Wahrscheinlichkeit, dass das Molekül aus dem Topf gestossen wird. Deshalb hängt die Zeit, bis das Molekül aus dem Topf fliegt, direkt mit der effektiven Ladung zusammen.

"Letztlich ist es ein statistisches Prinzip", erklärt Krishnan. "Wenn wir wissen, wie lange ein Molekül im Topf gefangen bleibt, wissen wir auch, wie tief der Topf ist. Und da die Topftiefe wiederum direkt von der effektiven Ladung des Moleküls abhängt, können wir diesen Wert sehr genau bestimmen."

Zwei Glasplatten

Um einen Potentialtopf zu erzeugen, komprimierten die Forschenden eine Lösung mit dem Protein zwischen zwei Glasplatten, eine davon mit mikroskopisch kleinen Löchern. Die in Potentialtöpfen gefangenen Moleküle wurden mit einem Fluoreszenzmittel markiert und liessen sich so mit einem optischen Mikroskop beobachten.

Diese Entdeckung ist für die Grundlagenforschung wichtig, sie könnte aber auch den Weg ebnen zu neuartigen diagnostischen Werkzeugen für viele Krankheiten, die mit falsch gefalteten Proteinen zusammenhängen, wie Alzheimer oder Krebs. "Wir wissen, dass die 3D-Konformation die effektive Ladung beeinflusst. Unsere Methode könnte einen neuen Ansatzpunkt bieten, um fehlerhafte Proteine nachzuweisen."

Originalveröffentlichung:
F. Ruggeri et al.; "Single-molecule electrometry"; Nature Nanotechnology; 2017.
M. Krishnan; "A Simple Model for Electrical Charge in Globular Macromolecules and Linear Polyelectrolytes in Solution"; Journal of Chemical Physics; 2017.
F. Ruggeri and M. Krishnan; "Spectrally resolved single-molecule electrometry"; Journal of Chemical Physics; 2017.
F. Ruggeri and M. Krishnan; "Lattice diffusion of a single molecule in solution"; Physical Review E; 2017.

Fakten, Hintergründe, Dossiers

  • Moleküle
  • Ladungsmessung
  • Proteine
  • Diagnostik

Mehr über Universität Zürich

  • News

    Umweltfreundliche Nanopartikel für die künstliche Photosynthese

    UZH-Forschende haben neuartige Nanopartikel für die künstliche Photosynthese entwickelt: sogenannte Quantenpunkte aus Indiumphosphid und Zinksulfid. Mithilfe von Sonnenlicht generieren diese Teilchen aus Wasser und Sonnenlicht Wasserstoff – einen nachhaltigen Energieträger. Diese leistungss ... mehr

    Besondere Antikörper weisen den Weg zum HIV-Impfstoff

    Rund ein Prozent der HIV infizierten Menschen produzieren Abwehrstoffe, die sich gegen die meisten Virusstämme richten. Diese breit wirkenden Antikörper sind der Schlüssel zu einem wirksamen Impfstoff gegen HIV. Forschende der Universität Zürich und des Universitätsspitals Zürich zeigen nun ... mehr

    Proteinveränderungen weisen auf Krebs hin

    UZH-Forschende können erstmals die Proteinmodifikationen exakt und für sämtliche Eiweisse einer Gewebeprobe charakterisieren. Die Veränderungen, die eine typische Reaktion auf Stress sind, geben Aufschluss über den Zustand einer Zelle. Gemeinsam mit dem USZ testen sie nun die neue Methode, ... mehr

  • q&more Artikel

    Vom Nachtschwärmer zur Lerche

    Die meisten Menschen kommen aufgrund ihrer Biochronologie entweder als Lerche (Frühaufsteher) oder Eule (Morgenmuffel) zur Welt und in der Pubertät entwickeln sie sich zum Nachtschwärmer. Mit dem 20. Lebensjahr tritt dann eine Wende ein und der Schlaf- und Wachrhythmus verschiebt sich konti ... mehr

  • Autoren

    Dr. Steven A. Brown

    Steven B. Brown studierte Biochemie am Harvard College, Cambridge, Massachusetts, USA. 1997 promovierte er im Fachgebiet Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. Von 1998-2005 war er als Postdoc am Institut für Molekulare Biologie a ... mehr

Mehr über Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.