q&more
Meine Merkliste
my.chemie.de  
Login  

News

Potenzial für eine grüne Wasserstoff-Wirtschaft

Erstmalige Charakterisierung einer sensorischen [FeFe] Hydrogenase gelungen

Max-Planck-Institut für Chemische Energiekonversion

11.01.2018: Hydrogenasen sind Enzyme, die in der Lage sind, Wasserstoffgas (H2) aus Protonen im wässrigen Milieu zu erzeugen. Eine Reaktion, die eine große Relevanz für eine potentielle zukünftige grüne Wasserstoffwirtschaft birgt.

Bakterien, die diese Enzyme enthalten, produzieren H2 häufig als Abfallprodukt ihres Zucker-basierten Metabolismus in Abwesenheit von Sauerstoff. Andere Bakterien können den Wasserstoff als Energiequelle nutzen. Hydrogenasen, die Schlüsselenzyme in beiden Prozessen sind nur unter speziellen Bedingungen erforderlich, d.h. ihre Synthese in dem Bakterium muss der Anwesenheit und Konzentration von H2 angepasst werden. Diese Regulation wird durch sogenannte sensorische oder regulatorische Hydrogenasen erreicht, die in der Lage sind, selbst kleinste Mengen von H2 im Medium zu detektieren und diese Information an die Protein-Synthesemaschinerie (für katalytische Hydrogenasen) weiterzuleiten.

Bis heute hat sich eine Klasse von Sensor-Hydrogenasen der Charakterisierung komplett entzogen, nämlich die der wichtigen [FeFe]-Hydrogenasen (HydS). Jetzt ist es einem Team von Wissenschaftlern am Max-Planck-Institut für Chemische Ernergiekonversion in Mülheim an der Ruhr und dem Institute of Low Temperature Science an der University of Hokkaido (Japan) gelungen, HydS aus dem thermophilen Bakterium Thermotoga maritima herzustellen und zu charakterisieren. Dieser Erfolg basiert auf der kürzlich entwickelten Technik der künstlichen Maturierung des Enzyms (Esselborn et al. Nat. Chem. Biol. 2013), sowie dem Einsatz moderner spektroskopischer Methoden, die zeigten wie das Protein das katalytische Zentrum in eleganter Weise feinabstimmt und es dadurch für seine sensorische Funktion optimiert.

Die Wissenschaftler zeigen, dass das katalytische Zentrum sehr empfindlich auch kleinste Mengen H2 detektiert, was dem Bakterium eine sehr effektive Signalübertragung erlaubt. Diese Ergebnisse stellen einen wesentlichen Schritt im Verständnis der Funktion der sensorischen Hydrogenasen dar. Die Kenntnis der Änderungen der Aminosäureumgebung im Sensor im Vergleich zu den katalytischen [FeFe]-Hydrogenasen ist ein wichtiges Element für das tiefere Verständnis dieser Wasserstoff-umsetzenden bzw. -erzeugenden Proteine. Die umfassende Entschlüsselung des Mechanismus der Hydrogenasen bietet die Grundlage, um bessere bioinspirierte Katalysatoren für den Einsatz in Brennstoffzellen und Wasserelektrolyseuren zu entwickeln. Ein wichtiger Schritt auf dem Weg zu einer Energiewirtschaft, die auf Wasserstoff als Energieträger basiert.

Originalveröffentlichung:
Nipa Chongdar, James A. Birrell, Krzysztof Pawlak, Constanze Sommer, Edward J. Reijerse, Olaf Rüdiger, Wolfgang Lubitz, Hideaki Ogata; "Unique spectroscopic properties of the H-cluster in a putative sensory [FeFe] hydrogenase"; Journal of the American Chemical Society; 2017

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Thermotoga maritima

Mehr über Max-Planck-Institut für chemische Energiekonversion

  • News

    Zwischenstufe im Katalysezyklus des Photosystem II identifiziert

    Die aktuellsten Forschungsergebnisse von Wissenschaftlern des MPI CEC, die die Wasseroxidationsreaktion erforschen, wurden als Cover-Artikel für die erste Ausgabe des Fachjournals Chemical Science im Jahr 2016 ausgewählt. Mit Hilfe theoretischer Chemie und Spektroskopie konnten Forscher in ... mehr

    Effiziente Produktion von Wasserstoff durch Algen

    Mikroalgen brauchen für die Produktion von Wasserstoff lediglich Licht und Wasser. Die Effizienz der Mikroalgen für die Wasserstoffproduktion ist allerdings gering und muss noch um 1-2 Größenordnungen gesteigert werden bevor ein biotechnologisches Verfahren interessant werden könnte. Wissen ... mehr

    Ein Schutzschirm gegen Sauerstoff

    Bei der Entwicklung von Brennstoffzellen setzten Generationen von Wissenschaftlern und Ingenieuren auf Katalysatoren auf Edelmetallbasis. Sie sind zwar effizient und stabil, aber leider auch teuer und nur in geringen Mengen verfügbar. Wissenschaftler des Zentrums für Elektrochemie – CES an ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Zellulärer Stromausfall

    Ein gemeinsames Merkmal neurodegenerativer Erkrankungen sind Proteinablagerungen in den Nervenzellen. Wie Wissenschaftler jetzt berichten, produzieren auch gesunde Zellen kontinuierlich verklumpungsanfällige Proteine. Grund dafür sind reaktive Sauerstoffspezies, die bei der zellulären Energ ... mehr

    Steife Fasern aus Schleim gesponnen

    Die Natur ist immer wieder ein guter Lehrmeister – auch für Materialwissenschaftler. An Stummelfüßern haben Wissenschaftler nun einen bemerkenswerten Mechanismus beobachtet, durch den sich Polymermaterialien bilden. Um Beute zu fangen, schießen die wurmartigen Kleintiere mit einem klebrigen ... mehr

    Protein-Atlas für längeres Leben

    Im Alter lassen viele Prozesse in den Zellen nach und das Risiko an altersbedingten Krankheiten wie Alzheimer, Parkinson oder Diabetes zu erkranken steigt dramatisch. Aber wirkt sich das Altern auf alle Organe und Gewebe gleichermaßen aus? Und sollten Medikamente, welche die Gesundheit im A ... mehr

q&more – die Networking-Platform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.